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ABSTRACT 
Today’s image capturing technologies are producing High Definitional-scale images which are also heavier on 

memory, which has prompted many users into cloud storage, cloud computing is an service based technology 

and one of the cloud service is Data Storage as a Service (DSaaS), two parties are involved in this service the 

Cloud Service Provider and The User, user stores his vital data onto the cloud via internet example: Dropbox. 

but a bigger question is on trustiness over the CSP by user as user data is stored remote devices which user has 

no clue about, in such situation CSP has to create a trust worthiness to the costumer or user, in these paper we 

addressed the mention insecurity issue with a well defined trusted image Storing and retrieval framework 

(TISR) using compress sensing methodology. 
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I. INTRODUCTION 
As per [1] “Verifying the image data security has 

emerged as a major issue in image storing on cloud 

Environments”. Cloud computing has been great 

revolution in handling outsourced data services With 

the advancement of information and computing 

technology, High definition images which provides 

vital information’s like   large-scale datasets  medical 

images [28], remote sensing images [2], satellite 

image databases, etc. Along with such data explosion 

is the fast-growing trend to outsource the image 

management systems to cloud and leverage its 

economic yet abundant computing resources [25] to 

efficiently and effectively acquire, store, and share 

images from data owners to a large number of data 

users [24]. 

Outsourcing the image to cloud is quite 

promising, in order to become truly successful, it still 

faces a number of fundamental and critical 

challenges, among which security is the top concern. 

This is due to the fact that the cloud is an open 

environment operated by external third parties who 

are usually outside of the data owner/users' trusted 

domain [12], [17]. On the other hand, many image 

datasets, e.g., the medical images with diagnostic 

results for different patients, are privacy-sensitive by 

its nature [1]. 

Thus, it is of critical importance to ensure that 

security must be embedded in the image service 

outsourcing design from the very beginning, so that 

we can better protect owners' data privacy without 

sacrificing the usability and accessibility of the 

information. Besides, due to the high-dimensionality 

and large-scale of the image datasets [24], it is both 

necessary and desirable that the image service 

outsourcing design should be as efficient and less 

resource-consuming as possible, in terms of 

bandwidth and storage cost on cloud. 

 

Traditionally, to establish such an image 

acquisition and sharing service, the data owner 

follows the Nyquist sampling theorem and often 

needs to acquire massive amounts of data samples, 

e.g., for high resolution images. Prior to transmission 

and image reconstruction, it is highly desirable to 

further pass these massive data through a 

compression stage for efficient usage of storage and 

bandwidth resources. Such a framework of large data 

acquisition followed by compression can be very 

wasteful, and often poses a lot of complexity on the 

data acquisition mechanism design at data owner 

side. For example, increasing the sampling rate can 

be very expensive in modern imaging systems like 

medical scanners and radars [30]. 

 

Compressed sensing [8], [10], [14] is a recently 

proposed data sampling and reconstruction 

framework that unifies the traditional sampling and 

compression process for data acquisition, by 

leveraging the sparsity of the data.1 With compressed 

sensing, data owners can easily capture compressed 

image samples via a simple non-adaptive linear 

measurement process from physical imaging devices, 

and later easily share them with users. In addition to 

simplified image acquisition and sharing, one can 

also apply compressed sensing, i.e., the process of 

taking non-adaptive linear measurements, over any 

existing large-scale image dataset, for the purpose of 

storage overhead reduction [13]. Specifically, as later 

shown in Section III-C, because the size of the 
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sample vectors is almost always much less than the 

original image data, simply storing the compressed 

sample vectors rather than the actual image data can 

help save the storage cost as much as 50% [13]. 

Understanding these benefits of compressed sensing 

is pivotal, because it would allow us to explore new 

possibilities of establishing secure and privacy-

assured image service outsourcing in cloud 

computing, which aims to take security, complexity, 

and efficiency into consideration from the very 

beginning of the service flow. 

 

In this paper, we initiate the investigation for 

these challenges and propose a novel outsourced 

image recovery service (TISR) architecture with 

privacy assurance. For the simplicity of data 

acquisition at data owner side, TISR is specifically 

designed under the compressed sensing framework. 

The acquired image samples from data owners are 

later sent to cloud, which can be considered as a 

central data hub and is responsible for image sample 

storage and provides on-demand image 

reconstruction service for data users. Because 

reconstructing images from compressed samples 

requires solving an optimization problem [11], it can 

be burdensome for users with computationally weak 

devices, like tablets or large-screen smart phones. 

TISR aims to shift such expensive computing 

workloads from data users to cloud for faster image 

reconstruction and less local resource consumption, 

yet without introducing undesired privacy leakages 

on the possibly sensitive image samples or the 

recovered image content. To meet these challenging 

requirements, a core part of the TISR design is a 

tailored lightweight problem transformation 

mechanism, which can help data owner/user to  

 

1To be consistent with the majority work in 

compressed sensing, we treat images as real-valued 

signals or data with finite dimensions, which can be 

represented as a long one-dimensional vector 

 

protect the sensitive data contained in the  

optimization problem for original image 

reconstruction. Cloud only sees a protected version 

of the compressed sample, solves a protected version 

of the original optimization problem, and outputs a 

protected version of the reconstructed image, which 

can later be sent to data user/owner for easy local 

post processing. Compared to directly reconstructing 

the image locally, TISR is expected to bring 

considerable computational savings to the 

owner/users. As another salient feature, TISR also 

has the benefit of not incurring much extra 

computational overhead on the cloud side. Our 

contributions can be summarized as follows. 

• To our best knowledge, TISR is the first image 

service outsourcing design in cloud that 

addresses the design challenges of security, 

complexity, and efficiency simultaneously. 
• We show that TISR not only supports the 

typical sparse data acquisition and 

reconstruction in standard compressed sensing 

context, but can be extended to non-sparse 

general data via approximation with broader 

application spectrum. 
• We thoroughly analyze the security guarantee 

of TISR and demonstrate the efficiency and 

effectiveness of TISR via experiment with real 

world data sets. For completeness, we also 

discuss how to achieve possible performance 

speedup via hardware built-in system design. 
 

The rest of this paper is organized as follows. 

Section II discusses the related work. Section III 

introduces the system architecture, threat model, 

system design goals, and some preliminaries. Then 

Section IV gives the detailed mechanism description, 

followed by security and efficiency analysis in 

Section V and further discussions on performance 

speedup in Section VI. Section VII gives the 

empirical results. Finally, Section VIII gives the 

concluding remarks. 

 

II. Previous Work 
Compressed sensing [8], [10], [14] is a data 

sensing and reconstruction framework well-known 

for its simplicity of unifying the traditional sampling 

and compression for data acquisition. Along that line 

of research, one recent work [13] by Donoho . to 

leverage compressed sensing to compress the storage 

of correlated image datasets. The idea is to store the 

compressed image samples instead of the whole 

image, either in compressed or uncompressed format, 

on storage servers. Their results show that storing 

compressed samples offers about 50% storage 

reduction compared to storing the original image in 

uncompressed format or other data application 

scenarios where data compression may not be done. 

But their work does not consider security in mind, 

which is an indispensable design requirement in 

TISR. In fact, compared to [13] that only focuses on 

storage reduction, our proposed TISR aims to 

achieve a much more ambitious goal, which is an 

outsourced image service platform and takes into 

consideration of security, efficiency, effectiveness, 

and complexity from the very beginning of the 

service flow. Another interesting line of research 

loosely related to the proposed TISR is about the 

security and robustness of compressed sensing based 

encryption [27], [29]. Those works explore the 

inherent security strength of linear measurement 

provided by the process of compressed sensing. The 

authors have shown that if the sensing matrix is 

unknown to the adversary, then the attempt to 

exhaustive searching based original data recovery 
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can be considered as computationally infeasible. 

However, these results are not applicable to TISR as 

we intentionally want the cloud to do the image 

reconstruction job for us, with the challenge of not 

revealing either the compressed samples or the 

reconstructed image content. 

 

This privacy-preserving image recovery service 

in TISR that we propose to explore is also akin to the 

literature of secure computation outsourcing [3]_[6], 

[18], [20], [21], which aims to protects both input 

and output privacy of the outsourced computations. 

With the breakthrough on fully homomorphic 

encryption (FHE), a recent work by Gennaro et al. 

[18] shows that a theoretical solution has already 

been feasible. The idea is to represent any 

computation via a garbled combinational circuit [28] 

and then evaluate it using encrypted input based on 

FHE. However, such a theoretical approach is still far 

from being practical, especially when applied in the 

contexts of image sensing and reconstruction 

contexts. Both the extremely large circuit and the 

huge operation complexity of FHE make the general 

solution impossible to be handled in practice, at least 

in a foreseeable future. Researchers have also been 

working on specific designs for securely outsourcing 

specialized computation tasks, like scientific 

computations, sequence comparisons, matrix 

multiplications, modular exponentiations, 

etc. [3]_[6]. Again, the highly customised design, 

some of which even involve heavy cryptographic 

protocols, are also not applicable in TISR. Another 

existing list of work that loosely relates to (but is also 

significantly different from) our work is secure 

multiparty computation (SMC). Firstly introduced by 

Rachlin [28] and later extended by Goldreich et al. 

[19] and others. SMC allows two or more parties to 

jointly compute some general function while hiding 

their inputs to each other. However, schemes in the 

context of SMC usually impose comparable 

computation burden on each involved parties, which 

is undesirable when applied to TISR model. 

In short, practically efficient mechanisms with 

immediate practices for secure image recovery 

service outsourcing in cloud are still missing. 

 

III. PROBLEM SOLVING 
 

3.1 Service Model and Threat Model 

The basic service model in the TISR architecture 

includes the following: At first, data owner acquires 

raw image data, in the form of compressed image 

samples, from the physical world under different 

imaging application contexts. To reduce the local 

storage and maintenance overhead, data owner later 

outsources the raw image samples to the cloud for 

storage and processing. The cloud will on-demand 

reconstruct the images from those samples upon 

receiving the requests from the users. In our model, 

data users are assumed to possess mobile devices 

with only limited computational resources.  

 

 
Figure 1. The TISR architecture in public cloud. 

 

Fig. 1 demonstrates the basic message flow in 

TISR. Let f and y be the signal and its compressed 

samples to be captured by the data owner (to be 

elaborated in Section IV). For privacy protection, 

data owner in TISR will not outsource y directly. 

Instead, he outsources an encrypted version y_ of y 

and some associated metadata to cloud. Next, the 

cloud reconstructs an output f_ directly over the 

encrypted y_ and sends f_ to data users. Finally, the 

user obtains f by decrypting f_. We leave the 

management and sharing of the secret keying 

material K between the data owner and users in our 

detailed decryption of TISR design. In Fig. 1, each 

block module is considered as the process of a 

program taking input and producing output. We 

further assume that the programs are public and the 

data are private. 

 

Throughout this paper, we consider a semi-

trusted cloud as the adversary in TISR. The cloud is 

assumed to honestly perform the image 

reconstruction service as specified, but be curious in 

learning owner/user's data content. Because the 

images samples captured by data owners usually 

contain data specific/sensitive information, we have 

to make sure no data outside the data owner/user's 

process is in unprotected format. 

 

3.2 Design model 

 

Design model for TISR  

• Security: TISR should provide the strongest 

possible protection on both the private image 

samples and the content of the recovered 

images from the cloud during the service flow. 
• Effectiveness: TISR should enable cloud to 

effectively perform the image reconstruction 

service over the encrypted samples, which can 

later be correctly decrypted by user. 
• Efficiency: TISR should bring savings from 

the computation and/or storage aspects to data 

owner and users, while keeping the extra cost 
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of processing encrypted image samples on 

cloud as small as possible. 
• Extensibility: In addition to image 

reconstruction service, TISR should be made 

possible to support other extensible service 

interfaces and even performance speedup via 

hardware built-in design. 
 

IV. THE TISR DESIGN 
While compressed sensing simplifies the data 

acquisition at data owner, it makes the data recovery 

from the compressed samples a computationally 

intensive task. As introduced in the preliminary, it 

requires the data users to solve an optimization 

problem, which could be very challenging for the 

data user with computationally weak devices like 

smart phones. Therefore, enabling a secure data 

recovery service by lever- aging the cloud is of critical 

importance in our proposed TISR architecture. Due to 

the sensitive nature of data, to outsource compressed 

image samples directly to the cloud is prohibited. And 

we need to protect the image samples before 

outsourcing them to the cloud. The cloud should not 

be able to learn the private content of the image 

samples either before or after the image 

reconstruction. To securely answer all these 

challenges while maintaining practically acceptable 

performance, we propose to investigate the secure 

transformation based approaches to achieve secure 

image reconstruction outsourcing to cloud. Below we 

start with the introduction of TISR framework and its 

related security definition. 

 

4.1 Framework and Security Definitions of TISR 

Given the problem formation for image 

reconstruction in Section III-C, our design 

challenge in TISR is how to let the cloud 

efficiently solve the optimization problem, 

Ω = (F, y, I, 1
T

), for image formation without 

equating content of either compressed image 

samples y or the reestabilshed image data g. To 

meet these design challenges, we propose to build 

TISR via the following random trans-formation 

based framework, which includes 4 probabilistic 

polynomial time algorithms as described below. 

• PGenaration is a algorithm running at the 

data owner end, which generates the secret key 

P upon getting input of some security 

parameter 1
p 

. 
• PTrans is a problem transformation algorithm 

flexibly running at either data owner or data user 

side, which generates a randomly transformed 

optimization problem Ω p   upon getting input 

of some secret key P  and an original 

problem Ω. 
• PSolv is a problem solving algorithm running 

at the cloud side, which solves the transformed 

problem Ωp and generates answer h. 

• PRec is the recover algorithm running at the 

data user side, which generates the answer g of 

original problem Ω upon getting input of the 

secret key P and the answer h of Ω p  from 

cloud. 
 

We denote this framework of TISR as 

ᴦ=(PGen,PTran, PSolv, PRec). Because г is 

supposed to be a random transformation framework, 

its security strength really hinges on the adversary’s 

advantage of guessing Ω  given Ωp .  Intuitively, for 

any two problems Ω 0, Ω 1 with the same size as 

defined in Eq. (4), it would be difficult for the 

adversary to tell them apart after the random 

transformation. Formally, we define the security 

strength of  as follows. 

 

V. Privacy-Assurance Evaluation 
Recall that TISR provides the privacy-assurance 

that users can harness the cloud to securely recover 

the image without revealing the underlying image 

content. This can be achieved because what cloud 

really recovers, h, protects the original sparse vector 

h via a general affine mapping g = Qh – e with a 

random choices of Q and e. To give the empirical 

results on privacy-assurance, recovering using the 

blinded vector h = Q-1(g + e).  

 

In both cases, the quick affine map by Q and e 

over g provides good enough protection for image 

protection. This explains given the basis V and the 

recovered encrypted vector h only consists of unclear 

image segments.. It is safe to say that TISR provides 

satisfactory trustiness. That is, without knowledge of 

secret key, the actual content of the protected 

underlying image cannot be perceived. 

 

VI. CONCLUSION 
In this paper, we have proposed TISR framework, 

ISR provides the privacy-assurance that users can 

harness the cloud to securely recover the image 

without revealing the underlying image content. With 

TISR, data owners can utilize the benefit of 

compressed sensing to consolidate the sampling and 

image compression via only linear measurements. 

TISR is able to achieve robustness and effectiveness 

in handling image reconstruction in cases of sparse 

data as well as non-sparse general data via proper 

approximation. Both extensive security analysis and 

empirical experiments have been provided to 

demonstrate the privacy-assurance, efficiency, and 

the effectiveness of TISR. On top of the current 

architecture, we also demonstrate a proof-of-concept 

of possible performance speedup through hardware 



Darapaneni Chandra Sekhar Int. Journal of Engineering Research and Applications    www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 10( Part -1), October 2014, pp. 

 www.ijera.com                                                                                                                                88 | P a g e  

built-in system design, which we believe is our 

important future work to be pursued. 
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